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Abstract 21 

A method to link bivariate statistical analysis and hydrodynamic modeling for 22 

flood hazard estimation in tidal channels and estuaries is presented and discussed 23 

for the general case where flood hazards are linked to upstream riverine discharge 24 

Q and downstream ocean level, H. Using a bivariate approach, there are many 25 

possible combinations of Q and H that jointly reflect a specific return period, T, 26 

raising questions about the best choice as boundary forcing in a hydrodynamic 27 

model. We show, first of all, how possible Q and H values depend on whether the 28 

definition of T corresponds to the probability of exceedance of “H OR Q” or “H AND 29 

Q”. We also show that flood hazards defined by “OR” return periods are more 30 

conservative than “AND” return periods. Finally, we introduce a new composite 31 

water surface profile to represent the spatially distributed hazard for return period 32 

T. The composite profile synthesizes hydrodynamic model results from the “AND” 33 

hazard scenario and two scenarios based on traditional univariate analysis, a 34 

“Marginal Q” scenario and a “Marginal H” scenario.  35 

  36 
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1. Introduction: 37 

Flood risk is increasing in coastal cities around the world due to several 38 

factors including population growth, economic development, sea level rise, 39 

subsidence, land use changes and intensification of rainfall (Hallegatte et al., 2013; 40 

Hanson et al., 2011). By the year 2100, between 0.2–4.6% of global population and 41 

0.3–9.3% of global gross domestic product may be exposed to coastal flooding if no 42 

adaptation occurs (Hinkel et al., 2014).   43 

Management of flood risk relies on statistical and hydrodynamic modeling 44 

to delineate populations and assets exposed to flooding, anticipate and monetize the 45 

consequences of flooding, and develop cost effective and socially robust 46 

interventions including infrastructure projects, insurance programs, land use and 47 

building code policy changes and emergency preparedness and response measures 48 

(Sayers et al., 2013, Luke et al. 2018). To address risks, statistical and hydrodynamic 49 

modeling is linked to delineate spatial fields of the intensity of flooding (e.g., depth 50 

and velocity) for a set of exceedance probabilities, information which is 51 

subsequently used to estimate average annual losses based on exposed assets and 52 

their vulnerability to damage (Scawthorn et al., 2006).  The linking of statistical and 53 

hydrodynamic modeling is straightforward when addressing a single hazard such as 54 

river discharge, Q. Flood risk is modeled by first performing univariate frequency 55 

analysis of annual maximum discharge to estimate extreme values ��� for yearly 56 

return periods T (e.g., ����� for 100 year return period discharge). Here, the hat 57 

notation indicates annual maximum discharge and the subscript refers to the return 58 

period. Second, hydrodynamic modeling is performed with ��� as a boundary 59 

condition to characterize spatial fields of water surface elevation at each return 60 

period, ��(�), where x represents distance along the river (FEMA, 2018). However, 61 

coastal hazard assessment must account for interaction of river flooding, intense 62 

rainfall, storm surge and waves and the likelihood of a coincidence in extreme and 63 

non-extreme levels of these hazards which is also known as compounding effects 64 
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(Gallien et al., 2018; Moftakhari et al., 2017). One of the most important 65 

compounding effects is the interaction of river discharge and the downstream ocean 66 

level, H, in tidal channels and estuaries. Of the world’s 32 largest cities, 22 are 67 

located on estuaries (Ross, 1995), at which the interactions between Q and H play a 68 

major role in flood risk estimation (Ward et al., 2018). In the U.S. alone, 140 million 69 

people (~50% of total population) live on the coast in close proximity to an estuary 70 

(Kennish, 2004).  71 

 72 

Figure 1: The spatial distribution of the T-year return period extreme water level, ηT(x), in an estuary or tidal 73 

channel (blue line) depends on upstream river discharge Q(t), downstream ocean water levels H(t), and the 74 

system geometry and resistance to flow.  This paper shows how bivariate statistical analysis and 75 

hydrodynamic modeling can be linked to compute ηT(x). 76 

 77 

Figure 1 illustrates the estuarine flood hazard problem: the objective is to 78 

estimate spatially distributed extreme water levels, ��(�), for return period T in a 79 

tidal channel or estuary. We assume knowledge of the system geometry (e.g., bed 80 

elevation, channel width and shape) and resistance to flow (e.g., Manning resistance 81 

coefficient). We also assume that gauges provide time series records of boundary 82 

conditions: river discharge measurements representative of what enters the reach, 83 

Q(t), and water level measurements, H(t), representative of the downstream end of 84 

the reach. Hence, the key question becomes: how can statistical and hydrodynamic 85 

modeling be linked for the estuarine setting involving two gage records 86 

characterizing two different aspects of hydrodynamic extremes? Put another way, 87 

can the existing paradigm of univariate flood hazard modeling described above for 88 
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rivers be extended to account for a second gage in a relatively simple and 89 

straightforward way? We write this mathematically as follows, 90 

 ��(�) = ���(
), �(
), �(�)� [1] 91 

where p(x) represents the parameters describing the channel geometry and 92 

resistance properties. Note that Eq. [1] can be extended for two-dimensional flood 93 

hazard levels by interpreting x as two-dimensional vector representing geographical 94 

coordinates. 95 

In the absence of robust models for extreme water levels in estuaries, overly 96 

simplistic bathtub models have received widespread use for estimating coastal 97 

flooding hazards and the resulting human exposure at regional (Torresan et al., 98 

2012) and national/international levels (Dasgupta et al., 2011; Hinkel et al., 2010). 99 

Bathtub models simply take an estimated extreme water level and extrapolate it 100 

inland to estimate population and assets exposed to flooding, which neglects the 101 

potential for flood stage to change with distance inland as a consequence of riverine 102 

forcing and/or tidal damping/amplification (Lanzoni and Seminara, 1998). This 103 

points to the potential for underestimation of flood consequences. On the other 104 

hand, bathtub models may also overestimate flood consequences by failing to 105 

account for flood defenses and the role of friction, inertia and storage in flooding 106 

dynamics (Gallien et al., 2014; Sanders, 2017). With the integration of statistical and 107 

hydrodynamic models to estimate extreme water levels, more robust estimates of 108 

extreme water levels become possible as well as mechanistic routing of flood water 109 

into adjacent urban areas to estimate flood impacts (Gallien et al., 2014, 2011).  110 

Existing methods for flood hazard assessment (solving Eq. 1) in tidal 111 

channels are limited (Hoitink and Jay, 2016). In particular, for the case where ��� 112 

and ��� are statistically independent, FEMA (2015) recommends the following 113 

procedure to estimate the hazard for return period T: (1) univariate analysis of 114 

annual maximum river discharge to estimate ��� and univariate analysis of annual 115 

maximum total water level to estimate ���, (2) a pair of hydrodynamic model 116 
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simulations with one forced by ��� and a non-extreme H value (usually chosen as 117 

mean higher high water) and the other forced by ��� and a non-extreme Q value, and 118 

(3) synthesis of the two hydrodynamic model simulations based on the pointwise 119 

maximum water level across the two simulations. An appealing aspect of the FEMA 120 

approach is that only two hydrodynamic simulations are required for each return 121 

period, which is important because resources for flood mapping are limited (Burby, 122 

2001) and because hydrodynamic flood simulation is computationally demanding 123 

(i.e., many hours for one simulation) especially for urban areas where fine 124 

resolution grids are needed to accurately depict flooding, e.g., Gallien et al. (2014, 125 

2011). Hence, the FEMA (2015) approach is aligned with needs for simple and 126 

efficient assessment approaches. Nevertheless, there are significant limitations. For 127 

example, univariate statistical analysis is not appropriate when ��� and ��� exhibit 128 

statistical dependence also known as compound risks (Leonard et al., 2014; 129 

Moftakhari et al., 2017; Zscheischler et al., 2018). Additionally, even when ��� and 130 

��� are independent, extreme water levels may occur over the length of the tidal 131 

reach due to the interaction of non-extreme boundary forcing values. FEMA (2018, 132 

2015) does not presently offer guidance to address this situation. Broadly, the FEMA 133 

(2015) guidance is recommends multi-hazard assessment based on the 134 

predominant hazards, yet limitations of this approach are increasingly being 135 

recognized (Hillier et al. 2015). 136 

The aforementioned challenges of linking statistical and hydrodynamic 137 

modeling can only be partly overcome with improved access to, and reduced costs 138 

of, high performance computing systems that map flood hazards through Monte 139 

Carlo simulation. That is, Monte Carlo simulation can be applied to depict thousands 140 

of scenarios based on different combinations of ��� and ���, and depict flood hazards 141 

based on the frequency of the pointwise exceedance of a water level thresholds 142 

(Purvis et al., 2008). However, bivariate statistical analysis is needed in place of 143 

univariate analysis to properly describe the correlation structure of the hazard 144 
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drivers and for sampling representative combinations of hazard drivers in Monte 145 

Carlo simulations.  146 

The objective of this paper is to present a solution method for Eq. 1 that 147 

accounts for statistical correlation structure and physical compounding effects (e.g., 148 

backwater) between boundary forcing values ��� and ��� while using only a small 149 

number of hydrodynamic model simulations. Building on the existing methodology 150 

recommended by FEMA (2015), we present a four-step method as follows: 151 

(1) Bivariate statistical analysis of Q and H records to yield possible (��� , ���) 152 

pairs for return period, T. 153 

(2) Selection of N specific ����, ���� pairs for hydrodynamic modeling. Here, we 154 

recommend N=4 (more detail will follow) although other options are 155 

possible. 156 

(3) Hydrodynamic modeling of N scenarios defined by ����, ���� pairs identified in 157 

Step 1 to yield spatial distributions of extreme water levels, ��
� (�), i=1, … ,N. 158 

Note that the subscript on η references return period and the superscript 159 

references the scenario. 160 

(4) Synthesis of hydrodynamic modeling results, ��
� (�), � = 1, … , �, to yield 161 

��(�). 162 

The remainder of the paper presents this method in detail along with 163 

applications. Section 2 presents methods and materials including data used in this 164 

study, the bivariate statistical analysis methods to determine all possible 165 

����, ���� pairs, identification of four specific pairs useful for hydrodynamic 166 

modeling, and methods for one-dimensional steady flow analysis and two-167 

dimensional unsteady analysis of extreme water levels. Section 3 presents results of 168 

one-dimensional steady-flow analysis from several sites showing differences in 169 

water level profiles arising from the (���, ���) pairs, and results of two-dimensional 170 

unsteady analysis at a single site where we further examine the limitations of the 1D 171 
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modeling and the added benefits of 2D modeling for assessment of coastal flood 172 

hazards. Here, we also introduce an extension of the FEMA (2015) method that 173 

offers potential to systematically improve the assessment of coastal flood hazards 174 

by linking bivariate statistical analysis and hydrodynamic modeling. We close the 175 

paper with discussion (Section 5) and conclusions (Section 6).  176 

Broadly, this work shows that extending the univariate paradigm of river 177 

flood hazard assessment to a bivariate paradigm of coastal flood hazard assessment 178 

is not straightforward, as has been reported for many other types of compound 179 

hazard (Kappes et al. 2012). Nevertheless, a systematic approach is possible and 180 

shown herein. Furthermore, results point to the possibility that the existing FEMA 181 

approach underestimates flood hazards where compounding effects are strong, and 182 

we present a simple method to make a better estimate.  183 

  184 
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2. Methods and Materials 185 

2.1. Data 186 

Analysis herein focuses on tidal channels/estuaries in southern California 187 

(See Figure 2) where flood hazards are affected by extreme ocean levels and flood 188 

discharges: the Los Angeles River (LAR), the Santa Ana River (SAR) and Newport 189 

Bay (NB). For ocean level analysis, hourly ocean water level measurements were 190 

obtained from the National Oceanic and Atmospheric Administration (NOAA) Los 191 

Angeles tide gauge (gauge ID: 9410660) at hourly intervals. Tide gauge 192 

measurements capture water level fluctuations from combined effects of tides, 193 

storm surge and other factors that affect sea levels on hourly and longer time scales, 194 

a reading that is sometimes called Total Water Level (TWL). Discharge 195 

measurements for the LAR were obtained from Los Angeles County Department of 196 

Public Works (LADPW) Station F319-R (LAR at Wardlow Road) and consisted of 92 197 

years of annual maximum discharge data between 1928-2014. Discharge 198 

measurements for the SAR were obtained from USGS Gauge 11078000 (Santa Ana 199 

River at Santa Ana) and consisted of 94 years of annual maximum discharge data 200 

between 1923 and 2017. River discharge measurements for Newport Bay were 201 

obtained from the Orange County Department of Water Resources (OCDWR) Gauge 202 

226 (San Diego Creek at Campus Drive) and consists of 39 years of instantaneous 203 

discharge (1978-2016). The San Gabriel River and Coyote Creek (see Figure 2) are 204 

not considered in this study since bivariate statistical analysis (see Section 3.1) 205 

showed no correlation between ��  and �� likely because of strong flow regulation 206 

from Whittier Narrows Dam located approximately 30 km from the coastline. 207 

Topographic and bathymetric data for LAR, and SAR were taken from the 208 

1 m resolution 2014 US Army Corps of Engineers National Coastal Mapping Program 209 

Topobathy Lidar DEM. Topographic and Bathymetric data for NB were based a DEM 210 

reported by Gallien et al. (2011) which merged several sources of topographic and 211 

bathymetric data.  212 
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 213 

Figure 2: Compound flood hazards in southern California were examined for Los Angeles River, San Gabriel 214 

River, Santa Ana River, and Newport Bay using river discharge and ocean water level measurements at the 215 

gage locations shown.  216 

2.2. Bivariate Statistical Analysis 217 

Statistical analysis of extreme values of discharge and water level impacting 218 

a tidal reach or estuary are based on records of annual maximum values, although 219 

threshold-based approaches are also possible. Henceforth, we use a hat notation to 220 

indicate annual maxima data from the records of upstream discharge and 221 

downstream water level, ��  and ��, respectively. Record lengths of several decades or 222 

more are preferred to enable estimation of water levels at relatively low 223 

frequencies, to be used for the design of infrastructure (e.g., return periods of 50 224 

years or greater). 225 

Bivariate statistical analysis begins with a test for correlation structure. 226 

While either linear or rank correlation coefficient measures can be used to assess 227 

the significance of the dependence between variables, tail dependence measures are 228 
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important for summarizing how extremes tend to occur simultaneously (Coles et al., 229 

1999; Hao and Singh, 2016). Here, we employ joint density approaches over other 230 

alternatives (Hawkes et al., 2002; Heffernan and Tawn, 2004; Neal et al., 2013; 231 

Zheng et al., 2015) due to their flexibility, and computational/mathematical benefits 232 

(Hawkes, 2006; Salvadori et al., 2015). 233 

According to Sklar’s Theorem (Sklar, 1959), there exists a bivariate Copula 234 

function ����� : �0,1� × �0,1� → �0,1� that formulates the joint distribution "�� ��  of the 235 

pair (��, ��), with marginal distributions "��  and "�� , for all (�, �) ∈ $%, as: 236 

"�� �� (�, �) = ��� �� &"�� (�), "��(�)'                                  [2] 237 

The multivariate model is constructed by fitting suitable univariate laws on 238 

the marginals, and an appropriate copula on the observed pairs (Genest and Favre, 239 

2007; Salvadori et al., 2007). Here, we use the method of Sadegh et al. (2018) which 240 

comprehensively analyzes the dependence structure of multiple drivers of flooding, 241 

and models them using copula functions to estimate return design values and their 242 

underlying uncertainties (Sadegh et al., 2018). This approach first selects a marginal 243 

distribution from 17 univariate distributions based on measures of goodness-of-fit 244 

including Akaike Information Criterion (AIC) and Bayesian Information Criterion 245 

(BIC), and then chooses a copula model from 26 copula functions. Copula model 246 

parameters are inferred through a Bayesian inference approach with Markov Chain 247 

Monte Carlo (Sadegh et al., 2018, 2017). The joint probability can refer to the 248 

exceedance of ��  AND �� or the exceedance of ��  OR ��  (Salvadori et al. 2016), and a 249 

case can be made for the relevance of both to coastal flood hazard assessment. First 250 

of all, risk assessment should reflect the possibility that flooding is caused by either 251 

extreme river discharge or extreme ocean levels, which is consistent with the OR 252 

scenario. On the other hand, hydrodynamic modeling involves the simultaneous 253 

occurrence of an upstream discharge and downstream water level, consistent with 254 

the AND scenario.   255 
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 Newport Bay data are used to illustrate this process. Figure 3 presents the 256 

outcome of bivariate statistical analysis using both the OR and the AND hazard 257 

scenarios using the method of Sadegh et al. (2018). There is no statistically 258 

significant correlation between river flow and ocean water level at Newport Bay, but 259 

correlation was found between river flow and non-tidal residual (NTR) defined as 260 

the difference between TWL and the astronomical tide level. Hence, bivariate 261 

statistical analysis that takes correlation structure into account is presented here 262 

using river flow and NTR. Figure 3 illustrates the similarities and differences 263 

between univariate and bivariate statistical analysis as well as the relative 264 

complexity introduced by the copula based AND and OR hazard scenarios. In 265 

particular, Figure 3 shows plots of the marginal distributions of NTR (Fig. 3a) and 266 

river flow (Fig. 3c) representative of what has traditionally been used for univariate 267 

flood hazard assessment, while Fig. 3b shows the copula-based AND and OR hazard 268 

scenarios. The AND and OR hazard scenarios are shown as iso- return period curve 269 

for T=50 year within a two-dimensional space whereby every point corresponds to 270 

a possible (���, ���) pair for use in hydrodynamic modeling. Additionally, along each 271 

iso- return period curve, there is a point of maximum probability density which 272 

represents the most likely (��� , ���) pairs given the correlation structure. Note that 273 

the most likely ���� , ���� pair for the OR hazard scenario exceeds extreme values 274 

given by the marginal distributions, while the most likely (���, ���) pair for the AND 275 

hazard scenario falls below the values given by the marginal distributions. This 276 

shows that the OR hazard scenario will lead to boundary forcing that is more 277 

conservative (meaning a more cautious approach to risk management perspective) 278 

than the AND hazard scenario.  279 

Given theoretical characteristics of the OR iso-return period curves (Salvadori 280 

et al., 2016) boundary forcing associated with (��� , ���) pairs at the ends of the OR 281 

curve may far exceed values given by the marginal distributions for the same return 282 
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period. This shows that the OR scenario creates seemingly unrealistic (highly 283 

conservative) hazard scenarios in areas of low probability density.  284 

 285 

 286 

Figure 3: Marginal probability distribution for (a) non-tidal residual (NTR) which is a surrogate for �� and (c) 287 

River Flow �� ; (b) bivariate statistical analysis of (��� , ���) pairs based on copula-based AND and OR hazard 288 

scenarios. Two iso- return period curves corresponding to T=50 year are shown. Note that ends of the copula-289 

based scenario curves for return period T are aligned with the return level of the marginal distribution for 290 

return period T. Note also that along each T=50 year curve, there is a point of maximum probability density 291 

which (due to correlation structure) represents the most likely (���, ���) pairs. The most likely (���, ���) pair 292 



14 

 

for the OR hazard scenario exceeds extreme values given by the marginal distributions, while the most likely 293 

(���, ���) pair for the AND hazard scenario falls below the values given by the marginal distributions.  294 

 295 

Hydrodynamic modeling of compound flood hazards for return period T is 296 

proposed based on four specific (���, ���) pairs taken from bivariate statistical 297 

analysis as shown in Figure 3:  298 

(S1)  A “Marginal Q” scenario defined by the T-year return period river 299 

discharge and a non-extreme water level downstream (typically taken 300 

as mean higher high water). 301 

(S2)  A “Marginal H” scenario defined by the T-year return period ocean 302 

water level and a non-extreme river flow (typically taken as the daily 303 

average flow). 304 

(S3)  An “AND” scenario based on the (���, ���) pair with the highest 305 

probability density along the AND iso-return period curve. 306 

(S4)  An “OR” scenario based on the (���, ���) pair with the highest 307 

probability density along the OR iso-return period curve. 308 

 309 

FEMA (2015) presently recommends hydrodynamic modeling of S1 and S2 and 310 

estimation of ��(�) based on the maximum of the two. Hence, two additional 311 

scenarios (S3 and S4) are considered here as a way of leveraging bivariate statistical 312 

analysis. 313 

 314 

2.3. Hydrodynamic Modeling 315 

Dynamic changes in water surface elevation within estuaries can be 316 

modeled with reasonable accuracy using shallow-water hydrodynamic models that 317 

assume a constant fluid density and a depth-averaged horizontal velocity (FEMA, 318 

2018, 2015; Sanders et al., 2010). Estuaries involve the mixing of riverine and ocean 319 

water with different densities, and may be characterized by strong vertical density 320 
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stratification that acts as a major control on the velocity distribution and transport 321 

(Geyer, 2010; Monismith, 2010). Consequently, three-dimensional models that 322 

account for variable density from salinity and temperature are often needed to 323 

estimate velocity distributions (Jay, 2010). However, the expression of density 324 

effects on surface water elevation is weak and can be neglected when predicting 325 

extreme water levels for the purpose of flood hazard modeling (Friedrichs, 2010). In 326 

this study, water levels are modeled by solving one-dimensional, constant density, 327 

steady-state shallow-water models (Chow, 2009) and two-dimensional, constant 328 

density, depth-averaged, shallow-water equations (Kim et al., 2015). When a model 329 

is set up for estuaries, tidal embayments, or tidal channels, the required boundary 330 

conditions correspond to a time series of river discharge at the upstream boundary, 331 

Q(t), and a time series of water level, H(t), at the downstream boundary. The 332 

upstream and downstream boundaries of the modeled spatial domain are generally 333 

placed adequately apart that compounding effects are avoided. This is not, however, 334 

always possible in practice because tide gauges may be located within estuaries. As 335 

an aside, we note that two-dimensional models require a spatial distribution of 336 

boundary forcing and in practice, hydrodynamic models include methods to 337 

distribute the total volumetric flow rate, Q(t), across the inflow boundary while the 338 

water level, H(t), is typically assumed to be uniform across the outflow boundary. 339 

Estuaries may also experience water level variability from internal forcing by winds 340 

and waves, and accounting for these effects is outside the scope of this study. 341 

However, the role of regional winds, waves, atmospheric pressure on water levels is 342 

captured by this approach based on the measurement of water levels at the tide 343 

gauge which are the basis as input for bivariate flood hazard assessment. 344 

 345 

2.3.1 1D Steady State Modeling 346 

One-dimensional (1D) steady state modeling of coastal flood hazards is 347 

useful as a first approximation of flood hazard levels along tidal channels and 348 
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estuaries and can be done quickly with low computational effort. Application of 1D 349 

analysis at several sites is performed to study how differences in the selection 350 

process for (��� , ���) pairs can affect the estimation of flood hazard levels. Flood 351 

hazard levels are computed by solving the gradually varied flow equation under the 352 

assumption of a rectangular channel with spatially variable Manning nm, width w, 353 

and depth h as follows (Chow, 2009)  354 

  d )
d* = − ,-

�./01    [3] 355 

where x represents distance measured inland from the mouth of the estuary, 356 

Fr=Q/(gh3w2)1/2 is the Froude Number and Sf= (nm Q/w)2/h10/3 represents the 357 

friction slope. Eq. [3] is integrated with geometrical data for each site, nm=0.032 m-358 

1/3s, the downstream water level boundary given by ��, and a river discharge given 359 

by �� . Numerical integration is performed with the 4th/5th order Runge Kutta Scheme 360 

ode45 supported by Matlab (Mathworks, Natick, MA). We note that the relatively 361 

simple channel geometry and resistance approximation is used herein to examine 362 

the relative differences between profiles from Scenarios S1-S4, and not to estimate 363 

flood hazard along these rivers in an absolute sense. More detailed geometry and 364 

resistance modeling will change the absolute value of flood hazard heights, but have 365 

little impact on the relative difference between scenarios. 366 

 367 

2.3.2 2D Unsteady Modeling 368 

Two-dimensional (2D) unsteady modeling is performed at one of the four 369 

sites, Newport Bay, to characterize limitations of the 1D steady state approximation 370 

and to study how the relative timing of the flood peak and high tide level can affect 371 

the flood hazard characterization. The 2D model BreZo (Begnudelli et al., 2008; Kim 372 

et al., 2015) is applied based on a previous validation at Newport Bay (Gallien et al., 373 

2014, 2011). BreZo relies on an unstructured mesh of triangular elements with 374 

varying size to capture the Bay’s topography and bathymetry. The model was 375 
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originally setup to predict flood impacts in the urbanized portions of the Newport 376 

Bay (City of Newport Beach, California, 2008). It features a fine resolution mesh 377 

with 3 m average linear resolution cells across streets and land parcels, while across 378 

the upper Newport Bay the average linear cell resolution is approximately 15 m. 379 

The boundary conditions in BreZo are setup to specify the riverine discharge ��  380 

entering the upper Newport Bay at the outlet of the San Diego Creek, while water 381 

level �� is specified along a boundary placed a short distance offshore of the 382 

embayment.  383 

For unsteady analysis, riverine discharge entering Newport Bay was 384 

modeled with a triangular hydrograph with a peak value given by ��  and a time of 385 

rise and total flood duration set to 3 and 8 hours, respectively, based on analysis of 386 

instantaneous discharge measurements. Additionally, ocean water level changes 387 

were modeled using a sinusoidal function with a 12 hour period (based on 388 

semidiurnal tides) such that the maximum ocean water level equals ��. These 389 

approximations followed preliminary modeling, which demonstrated that flood 390 

heights in the upper bay were much more sensitive to the magnitude of the peak 391 

flow than the duration of the event, within the range of observed values, and that 392 

high-water levels were not sensitive to the precise shape of the tidal forcing. We 393 

note that this may not be true in all systems, and thus these approximations are not 394 

presented as a generalization but rather as a reasonable simplification given specific 395 

site conditions.  396 

Figure 4 presents the sinusoidal ocean forcing and the triangular inflow 397 

hydrograph. To report the sensitivity of maximum water levels to the relative timing 398 

of the peak inflow and peak high tide, the “OR” Hazard Scenario was repeated using 399 

an inflow hydrograph that was shifted forward and backwater by as much as 6 400 

hours, as shown in Figure 4. 401 
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 402 

Figure 4: Inflow into Newport Bay was modeled with a triangular hydrograph with a duration and time to 403 

rise specified based on historical average values, and the ocean water level was modeled with a sinusoidal 404 

function with a period of 12 hours based on semidiurnal tides. The sensitivity of water level predictions to the 405 

time lag between peak river flow and high tide was examined with additional simulations involving forward 406 

and backwards time lags up to 6 hours. 407 

 408 

All modeling results are expressed in metric units and referenced to the NAD83 409 

State Plane horizontal coordinate system and NAVD88 vertical datum. 410 

3. Results 411 

3.1 Bivariate Statistical Analysis 412 

Correlation analysis between ��  and �� defined by TWL revealed no 413 

statistical significance at these southern California sites due to relatively small 414 

storm surges compared to variability in high tide levels attributed to astronomical 415 

factors. However, correlation was found using NTR as a surrogate for �� at three of 416 

the four sites considered: LAR, SAR and NB.  417 

Kendall tau and Spearman rho correlation coefficients between variables ��  418 

and �� (defined using NTR) are presented in Table 1 along with p-values. A p-value 419 

of less than 0.05 suggests a correlation at 5% significance level. We apply the 420 
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method of Sadegh et al. (2018) to find the distribution functions that best describe 421 

the univariate distribution of river flow and NTR. Additionally, the JOE bivariate 422 

Copula function was then found to best describe the correlation structure between 423 

��  and �� in all sites, given the marginal probabilities as shown in Fig. 3.  424 

 425 

Site Kendall Spearman Pearson Distribution 

 Correlation 

Coefficient 

p-value Correlation 

Coefficient 

p-value Correlation 

Coefficient 

p-value Q H 

LAR 0.2616 0.0167 0.3880 0.0122 0.4666 0.0021 rayleigh logistic 

SAR 0.3357 0.0012 0.4907 0.0006 0.4303 0.0032 nakagami logistic 

NB 0.3229 0.0113 0.4478 0.0115 0.5659 0.0009 inverse 

gaussian 

logistic 

Table 1: Correlation coefficients between variables ��  and ��. 426 

 427 

Site S1: Marginal Q S2: Marginal H S3: AND S4: OR  

 ��  �� ��  �� ��  �� ��  �� 

LAR 2435 1.611 10 1.901 2295 1.882 2531 1.914 

SAR 693 1.611 10 1.983 640 1.965 730 1.997 

NB 1090 1.611 10 1.922 1005 1.911 1167 1.930 

Table 2: Scenario S1-S4 values of the 50-year return period river discharge (m3/s) and ocean level (m above 428 

NAVD88) resulting from bivariate analysis as shown in Figure 3. Note that the AND and OR values correspond 429 

to maximum probability density (or likelihood). 430 

 Flood hazard levels ��  and �� for T=50 year resulting from the method of 431 

Sadegh et al. (2018) for Scenarios S1-S4 are presented in Table 2. Note that the 432 

“Marginal Q” scenarios all use a downstream water level corresponding to mean 433 

higher high water, and all of the “Marginal H” scenarios use a small (relative to the 434 

extreme flows) river discharge (~ average daily flow) taken as 10 m3/s. These 435 

results show that the LAR has larger river discharge values than SAR and NB, yet 436 

somewhat surprisingly, NB has larger river discharge values than SAR despite a 437 

much smaller watershed area. This is attributed to control of runoff by dams. Also, 438 

note that the water level of the “Marginal H” scenario differs between the three sites 439 
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despite all three relying on the Los Angeles Tide gauge. This is attributed to 440 

differences in the record length arising from joint probability analysis of tide gauge 441 

data and river gauge data.  442 

 443 

3.2 1D Flood Hazard Analysis 444 

1D steady state water surface profiles were computed for the 12 sets of 445 

(���, ���) pairs presented in Table 2 corresponding to S1-S4 at LAR, SAR and NB and 446 

are presented in Figure 5a, c, and e, respectively. Focusing first on the “Marginal H” 447 

and “Marginal Q” scenarios, these results shows that there is a transition in the 448 

dominant factor controlling flood hazard levels along the length of the system with 449 

H controlling flood hazards near the outlet and Q controlling flood hazards further 450 

inland. The length of oceanic control is relatively long for NB (~4 km) and LAR (~2 451 

km) and relatively short SAR (~ 300 m). Water levels from the “AND” scenario are 452 

lower than the higher of the two marginal scenarios at inflow and outflow 453 

boundaries, but, higher within an interior region where the marginal profiles 454 

intersect. On the other hand, the “OR” scenario yields a water surface profile that is 455 

always above both marginal scenario profiles. Conceptually, these results show that 456 

the “OR” scenario represents a more conservative (i.e., cautious) representation of 457 

the spatially variable water surface profile associated with return period T than the 458 

“AND” scenario which is expected based on the magnitude of the boundary forcing 459 

(see Table 2).  460 

FEMA (2015) guidance recommends mapping of flood hazard levels in tidally 461 

affected reaches based on the pointwise maximum of the two marginal scenarios. 462 

This profile (labeled “FEMA”) is presented in Figure 5b, d, and f for LAR, SAR and 463 

NB, respectively, alongside the “AND”, “OR”, and a proposed composite profile based 464 

on the pointwise maximum of the “H Marginal”, “Q Marginal” and “AND” hazard 465 

scenarios. At all three sites, the FEMA method underestimates the T year return 466 

period water level, compared to the “AND” scenario, within a region where the 467 
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marginal water surface profiles intersect. Hence, the proposed composite profile is 468 

slightly higher than the FEMA method profile where there are physical 469 

compounding effects due to the interaction of river and oceanic influences on water 470 

levels; otherwise the proposed composite profile tracks the FEMA method profile. 471 

 472 

Figure 5: Steady state water surface profiles versus distance from mouth, x, based on “Marginal H”, “Marginal 473 

Q”, “OR” and “AND” scenarios for (a) LAR, (c) SAR and (e) NB. Composite profiles based on the FEMA 474 

methodology and a proposed extension that considers the “Most Likely AND” scenario for (b) LAR, (d) SAR 475 

and (f) NB. 476 

 477 

3.3 2D Flood Hazard Analysis 478 

Two-dimensional modeling of flood hazards in Newport Bay leads to spatially 479 

and temporally distributed water levels. Hence, flood hazards are mapped based on 480 

the point maximum water level attained over an unsteady simulation covering the 481 
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rise and fall of a flood peak with magnitude ��  and the rise and fall of an ocean tide of 482 

height ��. Results are presented first for the case of the temporal coincidence in the 483 

two peaks, and later the sensitivity of the results to the time lag between peaks is 484 

shown. 485 

 486 

Figure 6: NB flood hazard levels versus distance from mouth, x, based on 1D steady model (a,c,e,f) and 2D 487 

unsteady model (b,d,g,h). 2D results based on 5 points selected from along the main channel and linearly 488 

interpolated between points. Using both 1D and 2D approaches, the “AND” scenario predicts lower flood 489 

hazard levels compared to the maximum of the marginal profiles at the mouth (x=0) and head (x=10000 m), 490 

and higher flood hazard levels near where the marginal profiles intersect (x=4000 m).; the “OR” scenario 491 

predicts the highest water levels everywhere. Differences between 1D and 2D models attributed to 492 

unsteadiness and treatment of complex geometry. 493 

 494 

A comparison of extreme water level scenarios (S1-S4) along the main 495 

channel of Newport bay using 1D and 2D methods is shown in Figure 6. For each 496 
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scenario, the modeling method has little impact on water profiles in the lower bay (x 497 

< 4000 m) while differences are evident in upper bay (x > 4000 m) and attributed 498 

mainly to differences in the treatment of complex system topography/bathymetry. 499 

That is, the 1D model assumes a rectangular cross-sectional with a width and depth 500 

based on the main channel, while the 2D model resolves both channel and 501 

floodplain/marsh topography allowing for greater conveyance at higher flood 502 

stages. Similar to the 1D model results presented earlier, the 2D results show that 503 

the “AND” scenario predicts lower flood hazard levels compared to the maximum of 504 

the marginal profiles at the mouth (x=0) and head (x =10000 m), and higher flood 505 

hazard levels near where the marginal profiles intersect (x =4000 m). Additionally, 506 

the “OR” scenario predicts the highest water levels everywhere. A magnified view of 507 

water surface profiles at the mouth is presented in Fig. 6e (1D) and 6g (2D) and at x 508 

=4000 m in Fig. 6f (1D) and 6h (2D).  509 

Figure 6 also shows the FEMA (2015) composite profile and the proposed 510 

composite water surface profile, which takes the pointwise maximum of the 511 

marginal scenarios and the “AND” scenario. In this case, the 2D modeling predicts a 512 

smaller difference between composite profiles (~6 cm) than 1D modeling (~15 cm) 513 

and this is attributed mainly to the treatment of complex topography. Nevertheless, 514 

small height differences can be significant with respect to the delineation of flood 515 

hazard zones where floodplain topography is relatively flat. For example, a vertical 516 

height of 6 cm on a slope of 1/1000 implies a 60 m change in horizontal position 517 

which is larger than many land parcels in developed areas.  518 

Figure 7a shows the spatial distribution of the differences between water 519 

surface levels based on the FEMA method and the proposed method. The largest  520 

differences (dη ≥1 cm) are found in the lower NB and are maximum at the 521 

constriction between upper and lower bay located at Pacific Coast Highway. Figure 522 

7a also shows differences in the western part of NB, off line from the main channel 523 

connecting San Diego Creek to the mouth of NB ,  524 
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 525 

Figure 7: Difference in water surface elevations between (a) the proposed composite profile and the FEMA 526 

composite profile, and (b) “OR Hazard” scenarios with coincident peaks at hour 9 vs scenarios with shifted 527 

peaks that achieve maximum water surface level. 528 

The effect of the relative timing of peak inflow and high tide to achieve 529 

maximum water surface elevations using the “OR” Hazard scenario was found to be 530 

relatively small compared to differences between hazard scenarios (i.e., AND vs. 531 

OR). Figure 7b shows color contours of the difference in water surface elevations  532 

between the scenario where hydrograph peaks are matched in time (peak at time=9 533 

hours in Figure 4) and water surface elevations obtained by shifting the peaks in 534 

time to achieve maximum water level. In the uppermost section of the upper bay 535 

maximum water level is achieved by delaying peak river discharge by one hour 536 

(peak Q at hour 10 in Figure 4), while in the lower bay maximum water level is 537 

achieved by advancing peak Q by one hour (peak Q at hour 8 in Figure 4). The 538 

difference between water levels based on the timing of high tides vs peak flow was 539 

found to be less than 3 cm across the majority of the bay. This constitutes only about 540 

a third of the difference between the proposed composite profile and the FEMA 541 
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(2015) composite profile. This result provides a posteriori validation of selecting Q 542 

and H as the basis for bivariate statistical analysis at this site as opposed to other 543 

system attributes such as the time lag between river flow and high tide.  544 

 545 

4. Discussion 546 

Multivariate statistical analysis is limited here to two variables (bivariate 547 

analysis) chosen to represent annual maximum river discharge and ocean level. 548 

Hazard scenarios beyond two variables are possible using copula-based methods, 549 

however expansion to higher dimensions can have drawbacks including uncertainty 550 

bounds so large that no conclusion may be drawn from its results (see Bevacqua et 551 

al. (2017) for example). For the sites considered, the importance of the randomness 552 

of annual maximum river discharge and ocean level (over other variables) justifies 553 

the formulation of the bivariate statistical analysis problem around these two 554 

variables. In systems where flood hazards are controlled by randomness in other 555 

factors such as waves or rainfall or even uncertain internal processes, a different 556 

approach would be needed. Examples of internal processes include the frictional 557 

interaction between streamflow and tidal levels (Kukulka and Jay, 2003a, 2003b; 558 

Moftakhari et al., 2013, 2016). Applications at a broader set of sites are warranted to 559 

better understand the broader applicability of the proposed method of bivariate 560 

analysis for flood hazard assessment in tidal channels and estuaries. 561 

Composite profiles derived from the pointwise maximum of water levels 562 

predicted by two or more hydrodynamic modeling scenarios offer a practical 563 

approach for delineating compound flood hazards in tidal channels and estuaries for 564 

a return period, T. Only a limited number of (relatively expensive) hydrodynamic 565 

model simulations need to be completed despite an infinite number of possible 566 

forcing scenarios based on bivariate statistical analysis. The most likely “AND 567 

Hazard” was identified as a promising candidate for extending FEMA (2015) 568 

guidance on flood hazard mapping in tidal channels and estuaries to improve 569 
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assessment of compound flood hazards. That is, results here suggest that the FEMA 570 

(2015) may underestimate the flood hazard level over an interior section of tidal 571 

reaches and estuaries where high water levels are sensitive to both riverine 572 

discharge and ocean levels. In NB, this section corresponds to the urbanized lower 573 

bay where exposure and vulnerability to flooding is highest. Moreover, an important 574 

implication is that extreme water levels may be higher at certain points within a 575 

system from combinations of river discharge and ocean heights that both fall below 576 

the return levels given by the marginal distribution (i.e., univariate analysis). On the 577 

other hand, the most likely “OR Hazard” scenario results in boundary forcing that 578 

exceeds the return levels given by univariate analysis, and it produces water levels 579 

that are higher than the marginal scenarios and the “AND Hazard” scenario. The “OR 580 

Hazard” scenario could be useful when there is interest in using a single 581 

hydrodynamic modeling scenario to represent compound flood hazard levels and to 582 

avoid the need to compute composite profiles from multiple hydrodynamic 583 

modeling scenarios. Importantly, the “OR Hazard” represents a more conservative 584 

interpretation of the T year return period hazard compared to traditional univariate 585 

assessment methods as well the “AND Hazard” scenario. 586 

This paper points to the possibility of more robust framework for mapping 587 

coastal flood hazards in tidal channels in estuaries that takes advantage of recent 588 

advances in multivariate statistical modeling (e.g., Sadegh et al. 2018) and 589 

hydrodynamic coastal flood hazard mapping (e.g., Gallien et al. 2011, Luke et al. 590 

2018) and is in line with the limited resources and past practices of flood hazard 591 

mapping (Burby 2001, FEMA 2015). In short, the method involves: (1) bivariate 592 

statistical analysis where correlations in extreme values exist, (2) selection of a 593 

limited number of ��  / �� pairs for return period T, (3) hydrodynamic modeling of 594 

the chosen pairs to produce extreme water levels, and (4) synthesis of the model 595 

results to provide a spatial distribution of water level associated with return period 596 

T. If this approach is taken to be more robust than existing methods (and more 597 
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research will be needed at a broader set of sites to make this assessment), then the 598 

limited testing presented herein points to existence of compound flood hazards that 599 

are presently underestimated by the existing FEMA method for tidal channels 600 

(FEMA 2015). That is, at all three sites, there was a reach of the channel where the 601 

proposed composite profile accounting for the “AND Hazard” scenario was higher 602 

than the composite profile accounting only for marginal scenarios as a result of 603 

physical compounding effects. Recent research has also shown that flood hazard 604 

zones in the U.S. are underestimated due to poor representation of pluvial flood 605 

hazards (e.g., Wing et al. 2017). 606 

Finally, we note that the hydrodynamic modeling shown here for Newport 607 

Bay is for only a single return period to demonstrate the hybrid statistical-608 

hydrodynamic framework. To consider other return periods, the corresponding iso-609 

probability curve (e.g., Figure 3) needs to be selected to define the preferred 610 

scenario.  611 

 612 

5. Conclusions 613 

A method of linking statistical analysis with hydrodynamic modeling to map 614 

compounds in tidal channels and estuaries is presented for cases where flood 615 

hazards are associated with both high river discharge (upstream forcing) and high 616 

ocean levels (downstream forcing). Bivariate statistical analysis is introduced to 617 

create combinations of river discharge and ocean levels suited for hydrodynamic 618 

modeling, and extreme water levels produced by hydrodynamic models are 619 

synthesized to create a composite water surface profile representative of return 620 

period, T. The method accounts for compound flood hazards in two ways. First, it 621 

accounts for statistical correlation between upstream and downstream forcing 622 

which represents one dimension of compound hazards. Secondly, hydrodynamic 623 

modeling accounts for physical compounding effects. Importantly, this work shows 624 

that water levels at interior points of a tidal channel or estuary resulting from the 625 
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bivariate “AND” hazard scenario can be higher than water levels from marginal 626 

scenarios even though the boundary forcing is smaller than the corresponding 627 

marginal scenarios. This is attributed to physical compounding effects, i.e., nonlinear 628 

interactions between discharge and water level described by shallow-water wave 629 

theory. This work also shows that if a single scenario is needed to depict spatially 630 

distributed compound flood hazard levels, the bivariate “OR” hazard can be used 631 

and results here show that it provides a conservative assessment of the T year 632 

return period hazard.  633 
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